There are a variety of factors that affect the spectrum of X-rays produced in a diagnostic imaging unit. This model shows the effect of varying the high voltage (kVp), added filtration and ripple in the high voltage supply to the X-ray tube.
The physical mechanisms by which X-rays are produced are Bremsstrahlung (in which collisions of the cathode electrons convert some of their energy into X-ray photons) and characteristic X-rays (in which the cathode electrons kick an inner shell electron out of an atom, and an X-ray photon is release when one of the atom's outer shell electron transitions to the inner shell). Changing the accelerating voltage of the cathode electrons (i.e. changing kVp) affects both mechanisms of X-ray production. Adding filtration to the X-ray beam reduces its intensity, but does not reduce all energy X-rays equally. Finally, voltage ripple actually causes the accelerating voltage of the cathode rays to vary below the peak voltage (kVp), so that X-ray tube is essentially averaging over a range of high voltages up to the set kVp.
Questions to explore:
The total X-ray energy is the area under the spectrum curve. What effect does changing kVp have on the total energy of the X-ray beam?
Characteristic X-rays cannot be created unless the kinetic energy of the cathode electrons can overcome the binding energy of the K shell electrons of the target atoms. Estimate this binding energy (in keV) by noting the accelerating potential at which the characteristic X-rays first appear. Does it make sense that this threshold energy is greater than the energies of the characteristic X-rays? (explain)
With kVp set at 120 kV, add filtration by setting the following characteristics of the filter material: atomic number (Z) =1, density (ρ in g/cm3) = 1 and thickness (d in cm) to 1.
Remove the filters by setting all filter parameters to zero, and then increase ripple. The ripple in the high voltage waveform can be seen by selecting the "Ripple Plot" checkbox.