
Nuclear Physics Binding Energy and Mass Defect

1 The figure below shows the graph of the binding energy per nucleon for a number of naturallyoccurring nuclides plotted against their mass number.

Which of the following statement is a correct deduction from the graph?

- A Binding energy is the energy used to bind protons and neutrons in a nucleus.
- **B** $^{27}_{13}Al$ will not spontaneously emit an alpha particle to become $^{23}_{11}Na$
- **C** The binding energy of $^{27}_{13}Al$ is greater than $^{238}_{92}U$
- **D** $^{23}_{11}Na$ is more stable than $^{27}_{13}Al$
- 2 Helium nuclei may result from the bombardment of lithium nuclei with protons. The reaction can be represented by the following nuclear equation:

$$_{3}^{7}Li+\ _{1}^{1}p\ \rightarrow2\ _{2}^{4}He+energy$$

The speed of light is c, and the masses of the particles are: Lithium $m_{\rm L}$ Helium $m_{\rm H}$ Proton $m_{\rm p}$

What is the net energy released during such a reaction?

A
$$(m_H - m_L - m_p) c^2$$

B
$$(2m_H - m_L - m_p) c^2$$

C
$$(m_L + m_p - m_H) c^2$$

D
$$(m_L + m_p - 2m_H) c^2$$

3 Carbon nuclei may result from the bombardment of Beryllium nuclei with Helium. The reaction can be represented by the following nuclear equation:

$${}_{4}^{9}Be + {}_{2}^{4}He \rightarrow {}_{0}^{1}n + {}_{6}^{12}C + energy$$

The binding energy per nucleon of the particles are:

Beryllium $E_{\rm B}$

Helium E_H

Carbon Ec

What is the net energy released during such a reaction?

- $A \quad (E_{\rm B} + E_{\rm H} E_{\rm C})$
- **B** $(9E_B + 4E_H 12E_C)$
- **C** $(12E_C 9E_B 4E_H)$
- $D \quad (E_{\rm C} E_{\rm B} E_{\rm H})$
- A nucleus has a mass number A, atomic number Z and a binding energy B. The mass of the neutron and proton are m_n and m_p respectively and c is the speed of light.

Which of the following expression correctly represents the mass of the nucleus?

- **A** $(A Z)m_n + Zm_p B/c^2$
- **B** $(A Z)m_0 + Zm_0 + B/c^2$
- **C** $Am_n + Zm_p B/c^2$
- **D** $Am_0 + Zm_0 + B/c^2$
- A nuclide ${}_{Y}^{X}Z$ has a mass M. The mass of the neutron and proton are m_n and m_p respectively and c is the speed of light.

What is the binding energy per nucleon of the nuclide?

- **A** $(\frac{Ym_p + (X-Y)m_n M}{X}) c^2$
- **B** $(\frac{M Ym_p (X-Y)m_n}{X}) c^2$
- $\mathbf{C} = (\frac{Ym_p + (X-Y)m_n M}{Y}) c^2$
- **D** $(\frac{M Ym_p (X-Y)m_n}{Y}) c^2$

List of Extension Qn

Instruction: Attempt these when you have finished your Group Discussion. Draw your answers on the table, take a pic and send it back to me via AirDrop. Do indicate your group member.

Q1

The relative atomic masses, A_r, of a number of nuclides are listed below:

nuclide	A_{r}
4 2He	4.0026
23 11 Na	22.9898
27 13 A1	26.9815

Discuss whether it is possible for ²⁷₁₃AI spontaneously to emit an alpha particle. J77/I/10

Q2

Calculate the binding energy of the deuteron ²₁H, given the following data:

```
mass of proton = 1.672648 \times 10^{-27} kg;
mass of neutron = 1.674954 \times 10^{-27} kg,
mass of deuteron = 3.344275 \times 10^{-27} kg;
speed of light = 2.997925 \times 10^8 m s<sup>-1</sup>.
```

Common misconception (by test results)

Q1: B

option C: binding energy vs binding energy per nucleon

Q2: D

option C: did not take into account of 2 helium

Q3: C

Option A: binding energy vs binding energy per nucleon

Option B: binding energy vs mass defect

Q4: A

Q5: A